jieba

Source

官方文档


github地址


特点

  • 支持三种分词模式:
    • 精确模式,试图将句子最精确地切开,适合文本分析;
    • 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
    • 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
  • 支持繁体分词
  • 支持自定义词典
  • MIT 授权协议

算法

  • 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)
  • 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
  • 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法

主要功能

1.分词

  • jieba.cut方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型
  • jieba.cut_for_search方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度 比较细
  • 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8
  • jieba.cut以及jieba.cut_for_search返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),
    或者用jieba.lcut以及 jieba.lcut_for_search直接返回 list
  • jieba.Tokenizer(dictionary=DEFAULT_DICT)新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射 。

示例代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
# encoding=utf-8
import jieba

seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print("Full Mode: " + "/ ".join(seg_list)) # 全模式

seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print("Default Mode: " + "/ ".join(seg_list)) # 精确模式

seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式
print(", ".join(seg_list))

seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
print(", ".join(seg_list))

输出:

输出

2.添加自定义词典

载入词典

  • 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率
  • 用法:jieba.load_userdict(file_name) # file_name 为文件类对象或自定义词典的路径
  • 词典格式和dict.txt一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码
  • 词频省略时使用自动计算的能保证分出该词的词频
  • 更改分词器(默认为 jieba.dt)的 tmp_dircache_file 属性,可分别指定缓存文件所在的文件夹及其文件名,用于受限的文件系统
  • 范例:

自定义词典


用法示例

调整词典

  • 使用 add_word(word, freq=None, tag=None)del_word(word) 可在程序中动态修改词典
  • 使用 suggest_freq(segment, tune=True) 可调节单个词语的词频,使其能(或不能)被分出来
  • 注意:自动计算的词频在使用 HMM 新词发现功能时可能无效

示例代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
>>> import jieba
>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
Building prefix dict from the default dictionary ...
Loading model from cache /var/folders/qh/kv_86hp56477dn64y0dr_8x40000gn/T/jieba.cache
Loading model cost 0.760 seconds.
如果/放到/post/中将/出错/。
Prefix dict has been built succesfully.
>>> jieba.suggest_freq(('中', '将'), True)
494
>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
如果/放到/post/中/将/出错/。
>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台/中/」/正确/应该/不会/被/切开
>>> jieba.suggest_freq('台中', True)
69
>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台中/」/正确/应该/不会/被/切开

3.关键词提取

基于 TF-IDF 算法的关键词抽取

import jieba.analyse
  • jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())
    • sentence 为待提取的文本
    • topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
    • withWeight 为是否一并返回关键词权重值,默认值为 False
    • allowPOS 仅包括指定词性的词,默认值为空,即不筛选
  • jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件

代码示例 (关键词提取)

关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径


关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径


关键词一并返回关键词权重值示例


基于 TextRank 算法的关键词抽取

  • jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')) 直接使用,接口相同,注意默认过滤词性。
  • jieba.analyse.TextRank() 新建自定义 TextRank 实例
  • 算法论文: TextRank: Bringing Order into Texts

基本思想:
1.将待抽取关键词的文本进行分词
2.以固定窗口大小(默认为5,通过span属性调整),词之间的共现关系,构建图
3.计算图中节点的PageRank,注意是无向带权图

使用示例

4.词性标注

  • jieba.posseg.POSTokenizer(tokenizer=None) 新建自定义分词器,tokenizer 参数可指定内部使用的 jieba.Tokenizer 分词器。jieba.posseg.dt 为默认词性标注分词器。
  • 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。

用法示例

>>> import jieba.posseg as pseg
>>> words = pseg.cut("我爱北京天安门")
>>> for word,flag in words:
...     print('%s %s'%(word,flag))
...
我 r
爱 v
北京 ns
天安门 ns

5.并行分词

  • 原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升
  • 基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows
  • 用法:
    • jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数
    • jieba.disable_parallel() # 关闭并行分词模式
  • 示例
  • 注意:并行分词仅支持默认分词器 jieba.dt 和 jieba.posseg.dt

6.Tokenize:返回词语在原文的起止位置

  • 注意,输入参数只接受 unicode

默认模式

result = jieba.tokenize(u'永和服装饰品有限公司')
for tk in result:
    print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))

result1

搜索模式

result = jieba.tokenize(u'永和服装饰品有限公司', mode='search')
for tk in result:
    print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))

result2

7.ChineseAnalyzer for Whoosh 搜索引擎

  • 引用: from jieba.analyse import ChineseAnalyzer
  • 用法示例

8.命令行分词

使用示例:python -m jieba news.txt > cut_result.txt

python -m jieba --help

命令行选项(翻译):

使用: python -m jieba [options] filename

结巴命令行界面。

固定参数:
  filename              输入文件

可选参数:
  -h, --help            显示此帮助信息并退出
  -d [DELIM], --delimiter [DELIM]
                        使用 DELIM 分隔词语,而不是用默认的' / '。
                        若不指定 DELIM,则使用一个空格分隔。
  -p [DELIM], --pos [DELIM]
                        启用词性标注;如果指定 DELIM,词语和词性之间
                        用它分隔,否则用 _ 分隔
  -D DICT, --dict DICT  使用 DICT 代替默认词典
  -u USER_DICT, --user-dict USER_DICT
                        使用 USER_DICT 作为附加词典,与默认词典或自定义词典配合使用
  -a, --cut-all         全模式分词(不支持词性标注)
  -n, --no-hmm          不使用隐含马尔可夫模型
  -q, --quiet           不输出载入信息到 STDERR
  -V, --version         显示版本信息并退出

如果没有指定文件名,则使用标准输入。

延迟加载机制

jieba 采用延迟加载,import jiebajieba.Tokenizer() 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba,也可以手动初始化。

import jieba
jieba.initialize()  # 手动初始化(可选)

在 0.28 之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径:

jieba.set_dictionary('data/dict.txt.big')

示例代码


其他词典

下载你所需要的词典,然后覆盖 jieba/dict.txt 即可;或者用 jieba.set_dictionary('data/dict.txt.big')