题目
Given a circular array C of integers represented by A
, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i]
when 0 <= i < A.length
, and C[i+A.length] = C[i]
when i >= 0
.)
Also, a subarray may only include each element of the fixed buffer A
at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j]
, there does not exist i <= k1, k2 <= j
with k1 % A.length = k2 % A.length
.)
Example 1:
1 | Input: [1,-2,3,-2] |
Example 2:
1 | Input: [5,-3,5] |
Example 3:
1 | Input: [3,-1,2,-1] |
Example 4:
1 | Input: [3,-2,2,-3] |
Example 5:
1 | Input: [-2,-3,-1] |
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
思路
循环数组的最大子数组之和要么是数组中的某一段子数组,要么是分为两段首尾相连。
对于第一种情况,就是普通的求最大子数组的做法。
对于第二种情况,除去两段的部分,中间剩的那段子数组其实是和最小的子数组,只要用之前的方法求出子数组的最小和,用数组总数和一减,同样可以得到最大和。
所以最大子数组之和为max(max_A, s - min_A)
需要注意检查max_A小于等于0的边界。
代码
1 | class Solution(object): |