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Abstract

Image segmentation is a computer vision task of extracting pixel-wise mask seg-
ments of objects for an image. While modern Deep Learning-based models have
achieved great success in various image segmentation tasks such as scene under-
standing, medical image analysis, applications for driver-less cars and more, they
can still be improved in terms of sheer performance, model explainibility and
computational complexity. In this work we will explore the effectiveness of deep
learning based models, deformable models and finally the combination of the two
over various Image Segmentation datasets. We aim to combine the classical geom-
etry and physics based approach of deformable models with modern large-scale
advances in deep learning in order to propose a novel model architecture. We will
finally perform an empirical analysis of various models on a suite of datasets and
metrics to do a comparative case study.

1 Introduction

Image segmentation is a computer vision task of assigning pixels in images into sets. In this paper,
we will largely focus on instance segmentation, which is the task of accurately delineating objects in
images, and semantic segmentation, which is the per-pixel class labeling of an image [24].

Image segmentation is a fundamental problem in computer vision as it closely resembles how human
vision works, and hence there have been concerted decade-long efforts to help machines analyze
object shape and motion in real time, just as normal humans "see". One early approach was a family
of mathematical models known as "deformable models". These models were motivated by the idea of
unifying representations of shape and motion by combining geometry and physics. In their simplest
form, these models often combine spline geometry and elastic dynamics by seeking to minimize the
energy of a curve in a plane. After their introduction in the 1980s, these models became commonly
used following demonstrations of their accuracy [3]

With improvements in hardware capabilities, deep learning approaches are the new state of the art.
As we will explore later, these models are able to capture spatially localized features which make
them powerful in tasks such as image segmentation.
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In this project, we will be applying deformable model approaches, deep learning approaches, and
combined approaches to image segmentation. The specific application we will be focusing on is
medical image segmentation. Medical images present interesting application of image segmentation
algorithms, particularly in problems such as lesion detection and segmentation. These algorithms can
be used to automate stages the diagnoses of diseases, and are hence of practical importance [20]

2 Related Work

2.1 Deformable Models

The classical deformable model is usually based on image pre-processing to eliminate many limi-
tations of manual slice editing and traditional image processing techniques [17]. The deformable
contour model [7] is the primary application of deformable models in medical image analysis, such as
snakes [16] to segment structures in 2D images, T-snakes [18] to conduct topological transformations
without additional machinery, live-wire [2, 11] to track the boundary through computing and selecting
optimal boundaries at interactive rates as the user moves a mouse. These methods treat object
boundaries as connected and continuous geometric complete models, the prior knowledge of the
shape of the object can be used to constrain the segmentation problem.

Morphological Snakes[21] are yet another family of methods which have proven instrumental for
image segmentation. In terms of method, they mimic the popular methodologies Active Contours
like Geodesic Active Contours [4].While Active Contour approaches require a PDE, Morphological
Snakes use morphological operators -such as dilation or erosion- over a binary array. This makes
Morphological Snakes faster and numerically more stable than their traditional counterparts.

2.2 Deep Learning

Deep learning approaches to computer vision problems have become increasingly common in recent
years. Typically, deep learning architectures for semantic segmentation consist of an encoder network
followed by a decoder network. The encoder network often consists of a deep learning backbone
architecture pre-trained on a dataset such as ImageNet.

U-Net [23] remains one of the most popular approaches due to its performance on segmentation
tasks, particularly in the medical image analysis subspace. Other popular deep semantic segmentation
architectures include region-based approaches such as R-CNN [13] and Mask R-CNN [15] and fully
convolutional approaches such as DeepLab [8]. Due to compute limitations and to avoid comparing
against approaches that have access to external data for pre-training purposes, we will compare our
approach against U-Net as a deep learning baseline.

2.3 Combined Approaches

More recently, approaches to medical image segmentation that combine elements of deep learning
and deformable models have been explored. One such approach, DALS (Deep Active Lesion
Segmentation) [14] was able to demonstrate favorable results when compared with other methods. The
motivation behind this approach was to combine the segmentation boundary precision of deformable
models with the non-linear feature extraction capabilities of deep learning based models.

3 Classical Deformable Models

While the goal of this paper of implement a novel Deep deformable model, we also tried visualising the
results specifically for Chan-Vese [6] and Geodesic Active contours [5] using Morphological snakes.

Chan-Vese segmentation algorithm helps segment objects with no clearly defined boundaries. This
algorithm is based on level sets that evolve iteratively and minimize the energy function. This is
defined by weights which correspond to summation of differences which is defined by weighted
values corresponding to the sum of differences intensity from the average value outside the segmented
region, the sum of differences from the average value inside the segmented region, and a term which
is dependent on the length of the boundary of the segmented region. It relies on three hyperparameters
being lambda1, lambda2 and nu.
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While Chan-vese performs very well for regions that are characterized by quite different global means,
it has limited power in discriminating regions with nearly the same global intensity distribution .

Figure 1: While the green region is expected to be segmented, chan-vese segments the entire brain.

Another approach implemented is using the geodesic active contours. Inspired from the classicial
approach of snakes, This geodesic approach for object segmentation allows to connect classical
snakes based on energy minimization and geometric active contours based on the theory of curve
evolution.

Figure 2: Geodesic contours fails to segment the nerve on right side of the brain.

Given the varying intensity of each images, it is necessary to incorporate deep learning based approach
along with the exploitation of deformable algorithms.

4 Deep Learning Models

4.1 U-Net

Similar to most deep semantic segmentation architectures, U-Net consists of sequential encoder and
decoder networks. The convolutional layers in the encoder network reduce spatial information while
increasing feature information depth, while the convolutional layers in the decoder network increase
spatial information while decreasing feature information, resulting in class probabilities per pixel in
the final output layer. Notably, the U-Net architecture also contains skip connections between layers
in the encoder and decoder networks, allowing the decoder network to reuse feature information from
the encoder network.

4.2 TranResUNet

A model which is an improvement on the U-Net [23], TransResUNet[22] is a new fully convolutional
encoder-decoder model.This architecture comprises of a pre-trained encoder, a special skip connection
and a post-processing module are also included in the proposed architecture. This architecture was
designed and evaluated on lung-segmentation data. The flow of the architecture follows 4 steps
primarily:
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• Pre-trained Encoder: Given that the weights of higher layers are rather dedicated to spe-
cialized feature extraction for the target task, the first 7 layers of VGG16 are selected.
Additionally an image (grayscale) is converted into color followed by convolutional layers
and maxpooling.

• Skip-Connection: The convolutional blocks take part in skip-connection. In UNet, features
originating from the encoder are primitive but decoder are more advanced due to more
processing which leads to a semantic gap. This is primarily one of the reasons to use Conv
blocks. This skip-connection plays a role in closing the gap and thus enabling the model
learn effectively.

• Decoder: Includes 3 decoder blocks with an up-sampling. Features of the last convolution
layer in a decoder block are concatenated with the corresponding encoded features from
its residual connection. Finally, the last layer of the decoder produces the predicted output
mask followed by a convolution and sigmoid activation.

• Postprocessing: Final blocks which helps reduce the noise in images by using the flood fill
algorithm.

Figure 3: The model architecture of TransResUNet [22].

5 Deep Deformable Models

5.1 Deformable U-Net

Deformable U-Net is based on original U-Net architecture while replacing standard convolution
with deformable convolution, including deformable convolution v1 [10] and v2 [25]. For pooling
operations, we replace fixed kernel average/max pooling with learned deformable kernels with offsets.
The reason for replacing standard convolution and pooling with deformable is some drawbacks of
CNNs: 1). the geometric transformations are assumed fixed and known. Such prior knowledge is used
to augment the data and design the features and algorithms. This assumption prevents generalization
to new tasks possessing unknown geometric transformations, which are not properly modeled; 2).
handcrafted design of invariant features and algorithms could be difficult or infeasible for overly
complex transformations, even when they are known. Therefore, we introduce these two new modules
that greatly enhance CNNs’ capability of modeling geometric transformations. The core idea of
deformable convolution and deformable pooling is adding offsets to get adaptive part localization
for objects with different shapes. More importantly, both modules are lightweight, which adds a
small number of parameters and computation for offset learning. They can easily be embedded in the
existing models (such as CNNs) without additional supervision signals and are suitable for end-to-end
learning.

5.1.1 Deformable Convolution

Following [10]’s work, deformable convolution consists of two steps: 1) sampling using a regular
grid R over the input feature map x, which defines the receptive field size and dilation, such as,
R = {(−1,−1), (−1, 0), . . . , (0, 1), (1, 1)}; 2) summation of sampled values weighted by w. As
shown in formula 1, for each location p0 on the output feature map y, we have y(p0), where pn
enumerates the locations in R. Compared to standard convolution, deformable convolution adds
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offsets {∆pn | n = 1, . . . , N} (N = |R|) to the regular grid sampling locations, which makes free
form deformation of the sampling grid. Therefore, formula 1 transforms formula 2. The offsets
∆pn are learned from the preceding feature maps, via additional convolutional layers. Thus, the
deformation is conditioned on the input features in a local, dense, and adaptive manner. During
training, both the convolutional kernels for generating the output features and the offsets are learned
simultaneously. To learn the offsets, the gradients are backpropagated through the bilinear operations.

y (p0) =
∑

pn∈R
w (pn) · x (p0 + pn) (1)

y (p0) =
∑

pn∈R
w (pn) · x (p0 + pn +∆pn) (2)

Based on deformable convolution v1, [25] proposed a new version called deformable convolution
v2 to boost the network’s modeling power and to help it take advantage of this increased capability,
mainly including three changes: 1). stacking more deformable Conv layers; 2). modulated deformable
modules; 3). R-CNN feature mimicking. In this paper, we mainly utilized the first two improvements.

5.1.2 Deformable Pooling

Similar to deformable convolution, deformable pooling also adds an offset to each bin position in the
regular bin partition of the original RoI pooling [12], which are learned from the preceding feature
maps and the RoIs, enabling adaptive part localization for objects with different shapes. As shown in
formula 3 and 4, for (i, j)-th bin (0 ≤ i, j < k), we get y(i, j), where nij is the number of pixels
in the bin, and offsets {∆pij | 0 ≤ i, j < k} are added to the spatial binning positions by bilinear
interpolation.

y(i, j) =
∑

p∈bin(i,j)

x (p0 + p) /nij (3)

y(i, j) =
∑

p∈bin(i,j)

x (p0 + p+∆pij) /nij (4)

5.2 Improvements of Loss Functions

Loss function plays a significant role in training a neural network. In the task of image segmentation,
Cross Entropy and Dice Coefficient are two widely used loss functions. However, both of them are
pixel-wised loss functions and do not take geometric information into consideration. To remedy this
defect, [9] proposes the Active Contour Loss, which is inspired by the general idea of classical active
contour models. Here, we will briefly introduce these loss functions. In the following equations,
the ground truth image and the prediction are denoted as T, P ∈ [0, 1]m×n respectively, where m
denotes the number of classes and n denotes the index of pixel in image spatial space N .

Cross-Entropy (CE) Loss: CE is a widely used pixel-wise measure to evaluate the performance of
the model among various classification tasks. Particularly, for binary classification problems, CE loss
can expressed as BCE loss as follows:

LossBCE(T, P ) = − 1

N

N∑
n=1

[Tn · log (Pn) + (1− Tn) · log (1− Pn)] (5)

where Tn denotes the value of n-th pixel and the same is with Pn. In this sense, CE loss treat each
pixel as an independent classification task.

Dice Coefficient (DC) Loss: Previously, DC is used as a metric for the evaluation of the segmenta-
tion performance but now has also been demonstrated to be a good loss function [19]. Intuitively,
DC measures the degree of overlapping between the ground truth and the prediction. The DC loss is
defined as follows:
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Figure 4: An example from Active Contour Loss [9], which takes the object’s area and length of the
boundaries in to account.

LossDC(T, P ) = 1− 2 ·
∑N

n=1 (Tn × Pn)∑N
n=1 (Tn + Pn)

(6)

From Eq.(6), we can see the second term of DC loss is very similar to the definition of F1-score.
Even though CE and DC loss functions have achieved a success in image segmentation, both of
them are pixel-wised loss functions to measure the similarity between T and P , but the geometrical
information are not taken into consideration.

Active Contour (AC) Loss: Inspired by the general idea of classical active contour models, [9]
proposes the Active Contour Loss, whose objective is to find an active contour which is a global
minimization of active contour energy for automated image segmentation. In the following equations,
we will denote the ground truth and the prediction as v, u ∈ [0, 1]m×n respectively. The AC loss is
defined as follows:

LossAC = λ · Length+Region (7)

where,

Length =

∫
C

|∇u|ds (8)

Region =

∫
Ω

(
(c1 − v)

2 − (c2 − v)
2
)
udx (9)

Since pixels in a image is not continuous, we therefore need to discretize the AC loss. The Eq.(8) and
Eq.(9) can be written into pixel-wised way respectively as follows:

Length =

i=1,j=1∑
Ω

√∣∣∣(∇uxi,j

)2
+
(
∇uyi,j

)2∣∣∣+ ϵ (10)

where ϵ is a hyperparameter used to avoid the square root is zero and is set as 10−6 in practice.

Region =

∣∣∣∣∣
i=1,j=1∑

Ω

ui,j (c1 − vi,j)
2

∣∣∣∣∣+
∣∣∣∣∣
i=1,j=1∑

Ω

(1− ui,j) (c2 − vi,j)
2

∣∣∣∣∣ (11)

where c1 and c2 represent the energy of foreground and background respectively and, in practice, can
be simply defined as c1 = 1 and c2 = 0. In this case, what the Region term essentially calculates is
the Mean Square Error (MSE). However, MSE loss sometimes will cause vanishing gradient problem
in the binary classification problem. Therefore, we replace Region term with CE loss and consider
Length term as an extra regularization. By introducing the length term, AC loss takes geometrical
information into consideration. Figure 4 shows the visualization of AC loss.
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6 Experiments

In this section, we comprehensively compare various image segmentation methods, including classical
deformable models, deep learning models, and deep deformable models. Furthermore, we also
conduct a comparison with different loss functions that are used commonly in the image segmentation
task.

6.1 Dataset and Experimental Setting

We mainly use the Brain MRI dataset1 for our model evaluation. This dataset contains brain MR
images together with manual FLAIR abnormality segmentation masks. To goal of the model is to
detect the tumor given a brain MRI image. For deep learning based method, we fix the training batch
size as 16 and set the learning rate as 3e−4. We train each model for 30 epochs and select the one
that performs best in the validation set for evaluation. Note we resize the image size to 64× 64 to
reduce training time.

6.2 Evaluation Metrics

Intersection over Union (IoU): IoU is one the most commonly used metrics in semantic segmenta-
tion. It is defined as the area of intersection between the predicted segmentation map and the ground
truth, divided by the area of union between the predicted segmentation map and the ground truth:

IoU = J(A,B) =
|A ∩B|
|A ∪B|

(12)

where A and B denote the ground truth and the predicted segmentation, in which the value ranges
from 0 to 1.

Dice Coefficient: Dice is another popular metric for image segmentation, which can be defined as
twice the overlap area of the predicted and the ground truth, divided by the total number of pixels in
both images:

Dice =
2|A ∩B|
|A|+ |B|

(13)

6.3 Quantitative Evaluation

As is shown in Table 1, we compare deep learning models (U-Net and TranResUNet) and deep de-
formable models (Deformable U-Net) with different loss functions (Cross-Entropy, Dice Coefficient,
and Active Contour). The reason why we did not compare with the classical deformable models is the
limitation of computing resources. It would be very time-consuming to run the classical deformable
methods on the complete data set, so we only compared the qualitative results, which will be shown
in the next section. From the Table 1, for the deep learning method, the model using the Active
Contour loss function has achieved better results, which proves the effectiveness of the combination
of deformable loss and deep learning methods. Although Deformable U-Net did not achieve the
results we expected, we assume that this is because 30 epochs has not fully converged the model.
Because the deformable convolution needs more calculations to compute the offsets, which slows
down the training speed. We believe that if we have enough computing resources and time, we can
get better results.

6.4 Qualitative Evaluation

6.4.1 Comparison with baseline methods

Our baseline methods include classical deformable models (Chan-Vese and Geodesic Active Cou-
tours), deep learning models (U-Net and TranResUNet), and deep deformable models (Deformable
U-Net). Note we only use Cross Entropy Loss for deep learning methods for this comparison. As is

1https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation
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Model Backbone Loss Train Dice Test Dice Train IoU Test IoU
U-Net Cross-Entropy 0.866 0.881 0.769 0.789

Dice Coefficient 0.864 0.865 0.761 0.762
Active Contour 0.876 0.890 0.786 0.804

TransResUNet Cross-Entropy 0.870 0.870 0.780 0.770
Dice Coefficient 0.811 0.816 0.695 0.697
Active Contour 0.880 0.880 0.789 0.790

Deformable U-Net Cross-Entropy 0.706 0.734 0.546 0.580
Dice Coefficient 0.678 0.695 0.513 0.532
Active Contour 0.644 0.722 0.498 0.569

Table 1: Quantitative comparison results of different deep learning based methods with different loss
functions.

Figure 5: Comparison results of classical deformable models and deep learning based methods.
Chan-Vese and Geodesic fail to predict the segmentation of tumor but outline the brain instead. In
contrast, supervised neural networks are able to detect the tumor much more accurately.

shown in Figure 5, we compared the performance of different models. Since both Chan-Vese and
geodesic active coutours predict the segmentation based on the image intensity, they usually simply
outline the brain region instead of segmenting the tumor given only the RGB information. In this case,
the neural network is a much better choice. After acquiring enough knowledge through the training
process, the network has the ability to tell where is the tumor. According to visualized results, U-Net
and TranResUNet outperform other methods while the predicted result of Deformable U-Net is not
so accurate and sometimes it even fails to detect the tumor. Note the boundary of predicted results of
UNet family looks not smooth because we resize the input image from 256× 256 to 64× 64.

6.4.2 Comparison with different loss functions

We then conduct comparison study of loss functions, including Cross Entropy (CE) Loss, Dice
Coefficient (Dice) Loss as well as Active Contour (AC) Loss. As we can see in Figure 6, there are
some holes inside the segmentation result of DC loss. Similarly, in the predicted map of CE loss,
there are also some areas with low degree of confidence. This can be attributed to the drawback of
pixel-wise loss functions. On the contrary, AC loss, which takes the geometrical information into
account, does not have such problem.
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Figure 6: Predicted results of UNet when using different training loss functions: Cross Entropy (CE)
Loss, Dice Coefficient (DC) loss and Active Contour (AC) Loss.

7 Conclusion and Future Work

We have demonstrated that deep deformable models perform decently when compared to state-of-the-
art Deep Learning models. While hyperparameter tuning can boost the model performance, increasing
the training samples can in turn produce better results. We also observe that in our experiments,
Vanilla networks generally perform better than the transformed deformable networks for the same
number of epochs and training data. This can be explained by the fact that training deformable
convolutional layers is computationally more expensive than convolutional layers, we believe that
more training epochs and larger image size could yield better results for deformable UNet-like models.
Due to our computational restraints, we limit our experiments for now but leave the exploration for
future. For further future work, Medical Imaging still remains one of the most important fields where
the applications of vision models are widely used. Given the models that have been implemented over
the decades being CNN primarily, transformer-based models have evolved and proven instrumental
in not only in text but vision-based tasks as well. A few models which have proven effective in image
segmentation/registration tasks include ViT-V-Net and voxelmorph [1].
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